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Abstract. Amodel-independent lower bound on the entropy S of the multi-particle system produced in high
energy collisions, provided by the measurable Rényi entropy H2, is shown to be very effective. Estimates
show that the ratio H2/S remains close to one half for all realistic values of the parameters.

1 Introduction

The evaluation of the entropy of the matter in the interac-
tion regions of high energy multi-particle production pro-
cesses is an important problem (cf. e.g. [1, 2] and references
given there). Within models, it is possible to estimate this
entropy with an uncertainty of about 10% (cf. e.g. [1]). The
problem we are addressing in the present paper is: how use-
ful is the model-independent lower bound, which can be
obtained from experiment using the Rényi entropies?
Even in classical physics it is not easy to measure en-

tropy. While there are simple gadgets to measure tempera-
ture, pressure and volume, there is no entropy meter. The
best one can do is to measure changes of entropy. This
is reasonably simple for reversible processes in closed sys-
tems, when the changes of entropy in a volume are entirely
due to the flows of heat across the boundary. In general,
however, there are sources of entropy within the volume
and these are more difficult to monitor. Moreover, in ther-
modynamics entropy is primarily defined for equilibrium
states. One extends the definition to so-called incomplete
equilibria where the system is thought of as consisting of
subsystems, each approximately in equilibrium and inter-
acting weakly with each other. Then the total entropy is
calculated as the sum of entropies of these subsystems in-
terpreted as systems in equilibrium. It is not quite clear,
however, how far from equilibrium one can go without loos-
ing the physical sense of entropy.
Boltzmann proposed the definition of entropy

S =−
∑

i

pi log pi , (1)
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where the sum is over all the states of the system, or in
more rigorous texts over all the states with non-zero prob-
abilities, and pi is the probability of state i. The tempera-
ture scale is chosen here so that the Boltzmann constant
equals 1. Thus entropy is dimensionless. When the proba-
bilities are given by the canonical ensembles, this formula
yields the results known from standard thermodynamics;
including the third principle of thermodynamics, which
states that under some conditions limT→0 S(T, . . . ) = 0.
A reinterpretation of (1) in terms of information theory

was given by Shannon. The result is that the formula can
be applied to any probability distribution. In the present
paper we deal with the particles produced in high energy
collisions of heavy ions. It is not clear how far from equi-
librium their distribution is. The possible final states, how-
ever, certainly have a probability distribution. Therefore,
to be on the safe side, we will refer to Shannon’s entropy,
keeping in mind, however, that if the final state is described
by the (grand-) canonical distribution, this is just Boltz-
mann’s entropy, or equivalently the entropy known from
standard thermodynamics.

2 Estimate of entropy
in the interaction region

In order to get a rough estimate of the entropy in the inter-
action region let us use the following simple model: a per-
fect gas of identical particles, with massm each, contained
in volume V . The temperature T and the chemical poten-
tial µ are given. Thus, neither the energy nor the number
of particles is fixed. Maxwell–Boltzmann statistics is used
with a factor 1n! in the contribution of each n-particle state
to the grand partition function. This is sometimes called
the quasi-classical approximation. A standard calculation
yields (22) for the entropy S(m,V, T, µ). In order to get



216 A. Bialas et al.: Rényi entropy H2

a number, however, it is necessary to know the values of
the four arguments. For the mass of the particle we will
take the pion mass. According to an estimate of Pal and
Pratt [1], about half the entropy of the system is carried
by pions. Here we consider only one kind of pions; thus, we
estimate about one sixth of the total entropy in the inter-
action region. The chemical potential is usually put equal
to zero. For µ→m from below, Einstein condensation of
the gas takes place and the quasi-classical approximation
breaks down. Quantitative estimates of the chemical po-
tential, cf. e.g. [2–4], give positive values, but sufficiently
far fromm to make the quasi-classical approximation good
within a few per cent. Temperatures are strongly model
dependent. In models where all the transverse momenta
are due to thermal motion, they can exceed 200MeV. In
models, where much of the transverse momentum is due to
collective motion they can drop to about 100MeV. For a re-
cent discussion of the temperatures in RHIC experiments
see [5]. In the following sections we will consider the region

m

2
< T <∞ ; −T < µ < T ; µ <m . (2)

Here, for comparison with [1], we will use T = 125MeV and
µ= 60MeV, which corresponds to µ

T
= 0.48.

The estimate of the interaction volume is by far the
most difficult part of the problem. The transverse dimen-
sions are usually estimated from the data on Bose–Einstein
correlations. There are reasons, however, why these esti-
mates are rather uncertain. Let us mention just two. The
phases of the elements of the single-particle density matrix
in the momentum representation cannot be determined
from momentum measurements. Neglecting these phases
one can underestimate the transverse size by a large fac-
tor [6]. Making guesses for them one can err in either di-
rection. Another reason is that according to the standard
formula for the diagonal elements of the density matrix in
the coordinate representation:

ρ̃(x,x) =

∫
d3qd3K

(2π)3
ρ(K,q)eiqx , (3)

where q= p−p′ and K= 1
2 (p+p

′), the mean squares of
the components of x, which characterize the size of the in-
teraction region, are

〈x2i 〉=−

∫
d3K

(
∂2

∂q2i
ρ(K,q)

)

q=0

. (4)

The small q region, however, is experimentally inacces-
sible. The data have to be extrapolated from larger q
regions. It is known that Gaussian extrapolations yield
underestimates, but steeper extrapolations can give any-
thing, infinity included. Other measures of the size in ordi-
nary space, e.g. from the half-width of the small q2 peak in
momentum space, are difficult to interpret. Actually, even
if the region q ≈ 0 were known there would be problems
of interpretation. What happens there is strongly affected
by the halo of pions produced far away from the decays
of long-lived resonances. This would have to be somehow
corrected.

The situation for the longitudinal dimension deserves
an additional comment. At high energies the total longi-
tudinal size of the interaction region is much larger than
the transverse size. In fact, it is believed to increase lin-
early with

√
s. The volume relevant for the calculation of

entropy, however, is the volume at given momentum. In
the longitudinal direction this should roughly correspond
to the longitudinal size of the homogeneity region, which is
obtained from the study of the Bose–Einstein correlations
with reservations as for the transverse dimensions. The
usual strategy is to calculate entropy densities, or other ra-
tios where the volume cancels. For instance, using (22) and
the corresponding formula for the particle multiplicity we
get

S

N
= 4−

µ

T
+
m

T

K1
(
m
T

)

K2
(
m
T

) . (5)

The number 4 on the right-hand side dominates. Each of
the other two is of the order of 0.4 and, moreover, they tend
to cancel. In particular, for µ= 60MeV the cancellation is
almost exact and1

dS

dy
≈ 4
dN

dy
. (6)

One could argue that in order to get results at fixed y
one should use a two-dimensional momentum distribution.
We checked that putting pL ≡ 0 one has to replace the
coefficient 4 in this formula by 3.11. Since, however, for
the experimental determination of dN/dy one uses par-
ticles from a rather large range of pL, we consider the for-
mula in the text more realistic. For the 5% most central
Au−Au collisions at

√
s= 130GeV, for the π− mesons at

midrapidity, the PHENIX collaboration finds
(
dN
dy

)

y=0
=

270±3 [7]. According to [1] this number should be reduced
by 12% in order to eliminate the pions from decays of long
living resonances. Thus we find

(
dS

dy

)

y=0

= 961 . (7)

Pal and Pratt [1], from amore sophisticated, but closely re-
lated, argument find for a sample of less central collisions

(centrality 11%)
(
dS
dy

)

y=0
= 680. For the corresponding

sample (centralities from 5% to 15%) the PHENIX col-
laboration gives dNdy = 200±2, which, introduced into (6),

yields
(
dS
dy

)

y=0
= 704, in reasonable agreement with the

number from [1]. Similarly, using as the density of thermal
π− mesons one half of the overall π− density, as recom-
mended by Akkelin and Sinyukov [2], one obtains from (6),
at
√
s= 130GeV and

√
s= 200GeV respectively, dSdy = 520

and dSdy = 610, to be compared with 470 and 570 obtained
in [2]. The particle densities have been taken from the
figures in [2] and averaged over the PHENIX and STAR
results.

1 Similar formulae have been, of course, derived and used for
many years.
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Let us discuss now the uncertainties of these numbers.
The errors quoted here from [7] are statistical. Moreover,
there is a systematic error estimated as 13% [7]. In [1] the
error is estimated to be about 10%. This error would be
quite acceptable; it is model dependent, however. For in-
stance, most crystals at low temperatures have very low
entropies (third principle of thermodynamics) and esti-
mating their entropies from a perfect gas model would
give results wrong by orders of magnitude. Admittedly,
the matter in the interaction region is not as regular as
a crystal at low temperatures, but it is not a perfect gas ei-
ther. Few would doubt that the perfect gas approximation
is better than the low temperature crystal approximation,
but how good it actually is, is an open problem. In order
to shed some light on this problem it has been proposed by
two of us [8] to study the Rényi entropies, which are both
measurable and related to Shannon’s entropy. For some
more work in this direction see [9, 10] and for a recent re-
view see [11]. Let us now recall some properties of Rényi
entropies.

3 Rényi entropies

Let us consider an arbitrary system with states labelled by
index i. We will explicitly write down formulae for the case
when i is discrete, but the generalization to the case when
the spectrum of i is continuous, or partly continuous, can
be done in the standard way. The Rényi entropy of order l
is defined by the formulae

Hl =
logC(l)

1− l
; C(l) = Trρl =

∑

i

pli , (8)

where pi is the probability of state i.
The Rényi entropies have a number of nice features (see

e.g. [12]). They are generalizations of Shannon’s entropy,
because H1 = S. They satisfy three out of the four axioms
used by Khinchin to derive the formula for Shannon’s en-
tropy, viz. they are functions of the probabilities pi, they
do not change when a state with zero probability is added,
and they reach their maximal values when all the proba-
bilities pi are equal (micro-canonical ensemble). It follows
from (8) that for the micro-canonical ensemble they coin-
cide with Shannon’s entropy; thus, in a way they meas-
ure the nonuniformity of the system. Instead of Khinch-
in’s fourth axiom, which refers to the entropy of a system
consisting of subsystems, they all satisfy the weaker con-
dition that when a system consists of independent subsys-
tems the total entropy is the sum of the entropies of the
subsystems.
A useful feature of Boltzmann’s entropy, as studied in

heavy ion collisons, is that it changes neither during the
free streaming of the particles after freeze-out nor during
the hydrodynamic expansion, provided this expansion is
non-dissipative. Rényi entropies do not change in the free
streaming process, because they are invariant under the
transformation corresponding to the unitary time evolu-
tion of the system,

Fig. 1. Temperature dependence of the Rényi entropy H2
along the reversible adiabate, S = Const, of a perfect gas. The
number of particles N is kept constant. The volume cancels

ρ(p, p′)→ e−iHtρ(p, p′)eiHt . (9)

In fact, as seen from this argument, they are invariant even
if the final state interactions are included, provided these
interactions can be described e.g. by the Schrödinger equa-
tion. They do change, however, when the volume of the
system is changed adiabatically and reversibly, i.e. in par-
ticular in non-dissipative flows. In order to illustrate this
point we have calculated the Rényi entropy H2 for a per-
fect gas expanding adiabatically and reversibly, i.e. at con-
stant Shannon entropy. The result is shown in Fig. 1. Since
Shannon’s entropy remains constant, the temperature de-
pendence plotted reflects the change of the Rényi entropy
H2 as a function of temperature. This dependence is not
very strong, however. For temperatures changing from very
high to 70MeV the change is by about 0.2 unit per particle,
to be compared with the total entropy of about four units
per particle.
There are attempts to build a thermodynamics where

the Rényi entropies play the role of Boltzmann’s entropy
in standard thermodynamics (cf. e.g. [13]). The motiva-
tion is to describe distributions with “thick tails” which
occur often in experiment. Here we will not discuss these
possibilities but use the Rényi entropies as a source of in-
formation about Shannon’s entropy. There is a theorem, cf.
e.g. [12], that the Rényi entropyHl of a system is a decreas-
ing function of its index l. A proof is given in the appendix.
Therefore,

S(m,V, T, µ)>H2(m,V, T, µ) . (10)

Similar inequalities hold also for the Rényi entropies of
higher orders, but the corresponding bounds are weaker
and, therefore, less useful.

4 Rényi entropies and standard
thermodynamics

Let us consider an open, one component system of particles
in equilibrium, at temperature T and chemical potential
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µ. The corresponding grand-canonical probability distri-
bution is

pi =
1

Z
e
Ei−µni
T , (11)

where, from the normalization of the probability distribu-
tion, the grand partition function is

Z =
∑

i

e
Ei−µni
T . (12)

The grand partition function is related to the thermody-
namic potential Ω by the formula

Ω(T, V, µ) =−T logZ . (13)

The potential Ω is well known in statistical physics. Its re-
lations to other thermodynamical parameters follow from
the identity

dΩ =−SdT −pdV −
∑

α

Nαdµα , (14)

where α labels the kinds of particles in the system. In the
following we discuss one component systems, so that the
index α is not necessary, and we normalize the chemical po-
tential µ so that N denotes the number of particles in the
system. If for arbitrary real, positive λ

Ω(T, λV, µ) = λΩ(T, V, µ) , (15)

as is usually the case when there are no long range interac-
tions, then differentiating both sides of this equation with
respect to λ, putting λ= 1 and using (14), one finds

Ω(T, V, µ) =−pV . (16)

The probability distribution (11) is a standard concept
in the statistical physics of equilibrium states; but also for
non-equilibrium states it is considered a reasonable first
guess, because it corresponds to no information about the
system except for the kind and average number of particles,
their average energy and the (fixed) volume [12].
Substituting (11) into (8) and using the definition of the

potential Ω one finds

Hl(T, V, µ) =
l

l−1

1

T

(
Ω

(
T

l
, V, µ

)
−Ω(T, V, µ)

)
.

(17)

An equivalent formula has been given in [9]. Thus, in gen-
eral, the Rényi entropy Hl is expressed by the thermody-
namic functions at two different temperatures T and T/l.
The only exception is at l = 1, when the definition of Hl
yields an indefinite expression of the type 0/0. For l→ 1,
however, one finds the well-known result

lim
l→1
Hl(T, V, µ) =−

∂Ω(T, V, µ)

∂T
= S(T, V, µ) . (18)

5 Gas of non-interacting free particles

Let us consider a one component system of free spin zero
particles, contained in a fixed volume V and with the
Hamiltonian

H =
N∑

i=1

√
p2i +m

2 . (19)

The system is open so that the chemical potential µ and
not the number of particles N is fixed. The state of the
system i is specified by giving the number of particles ni
in this state and all their momenta. Thus, in the quasi-
classical approximation, the grand partition function is

Z(T, V, µ) =
∞∑

n=0

1

n!

(
V e

µ
T

(2πh̄)3

∫
d3p e−

√
p2+m2

T

)n
. (20)

Note that the indistinguishability of particles has been
taken into account only approximately, by dividing each n-
particle contribution by n!. This is theMaxwell–Boltzmann
statistics. As is well known, it is a good approximation
when the chemical potential is much smaller than the
particle mass. A more general formula based on the Bose–
Einstein statistics will be derived latter.
The integral over momenta can be evaluated in spher-

ical coordinates, using the Bessel functions of imaginary
argument Kν(z) (cf. e.g. [14]). The resulting potential
Ω(T, V, µ) is

Ω(T, V, µ) =−
m2V T 2

2π2h̄3
e
µ
T K2

(m
T

)
. (21)

The corresponding (Shannon) entropy is

S =−
∂Ω

∂T
=
m2V T

2π2h̄3
e
µ
T

[(
4−
µ

T

)
K2

(m
T

)
+
m

T
K1

(m
T

)]
.

(22)

Substituting the expression for Ω(T, V, µ) into (17) one
finds the Rényi entropies,

Hl(T, V, µ) =
l

l−1

K2
(
m
T

)
− l−2e

(l−1)µ
T K2

(
lm
T

)
(
4− µ

T

)
K2
(
m
T

)
+ m
T
K1
(
m
T

) S(T, V, µ).

(23)

Let us consider some limiting cases. Using the formula [14],
valid for z→ 0 and ν > 0,

Kν(z)≈
1

2
Γ (ν)

(
2

z

)ν
, (24)

one finds that form� T and km� T

Hl(T, V, µ)≈
l

l−1

(
1− l−4e(l−1)

µ
T

) 1

4− µ
T

S(T, V, µ) .

(25)

This formula is useful for numerical estimates, because in
the limitm→ 0 (23) becomes an ∞∞ expression.



A. Bialas et al.: Rényi entropy H2 219

Making the further assumption µ→ 0 one finds the for-
mula given in [8]:

Hl(T, V, µ)≈
1+ l−1+ l−2+ l−3

4
S(T, V, µ) . (26)

The ratio H2(T,V,µ)
S(T,V,µ) , calculated numerically from (23),

is shown in Fig. 2. The values for µ > m are not shown,
because they are unphysical. One should keep in mind,
however, that also for µ <m our method of handling the
indistinguishability of massive particles is quantitatively
reliable only for m−µ

T
sufficiently large.

The results are rather encouraging. The ratio decreases
with increasing m

T
and with decreasing µ

T
, but even for

µ=−T and m= 2T it is still about 0.33 so that the lower
bound underestimates the exact value by a factor of 3. At
m = µ = T the ratio reaches its maximum of about 0.53.
This last result, however, should be verified, because the
arguments are beyond the reach of applicability of the
Maxwell–Boltzmann statistics. Putting pL ≡ 0 one finds
qualitatively similar results with the ratio H2/S ranging,
in the {T, µ} region considered, from 0.35 to 0.875.
Let us reconsider now the gas of non-interacting free

particles with the Hamiltonian (19), but handling correctly
the statistics. The standardmethod is to use, instead of the
states characterized by the number of particles ni and mo-
menta of the ni particles, the occupation numbers np of all
the single-particle states. Then

Z(T, V, µ) =
∏

p

⎛

⎝
∞∑

n(p)=0

e−n(p)
E(p)−µ
T

⎞

⎠ . (27)

Summing the geometrical progressions and using the
quasi-classical approximation to convert in logZ the sum-
mation over momenta into an integration, one finds

Ω(T, V, µ) =
V T

(2π)3

∫
d3p log

(
1− e−

E(p)−µ
T

)
. (28)

Expanding the logarithm in powers of the exponential and
integrating term by term like in the Maxwell–Boltzmann

Fig. 2. Ratio of the Rényi entropy H2 to Shannon’s entropy S;
Maxwell–Boltzmann statistics. The unphysical results for µ >
m are not included

case, one finds

Ω(T, V, µ) =−
m2V T 2

2π2

∞∑

n=1

n−2e
nµ
T K2

(nm
T

)
. (29)

Note that keeping the n= 1 term only, one reproduces the
Maxwell–Boltzmann case. The corresponding Shannon en-
tropy is

S(T, V, µ) =
m2V T

2π2

×
∞∑

n=1

n−2e
nµ
T

[(
4−
nµ

T

)
K2

(nm
T

)

+
nm

T
K1

(nm
T

)]
. (30)

Let us note the identities

Ω(T, V, µ) =
∞∑

n=1

ΩMB

(
T

n
, V, µ

)
;

S(T, V, µ) =
∞∑

n=1

n−1SMB

(
T

n
, V, µ

)
, (31)

where the subscript MB denotes the quantities calculated
in the Maxwell–Boltzmann approximation. The Rényi en-
tropies are

Hl(T, V, µ) =
l

l−1

×

∑∞
n=1(n)

−2e
nm
T K2

(
nm
T

)
−
∑∞
n=1(ln)

−2e
lnm
T K2

(
lnm
T

)
∑∞
n=1 n

−2e
nµ
T
[(
4− nµ

T

)
K2
(
nm
T

)
+ nm
T
K1
(
nm
T

)]

×S(T, V, µ) . (32)

In Fig. 3 the double ratio (H2/S)BE(H2/S)MB
is shown. It is seen

that the ratio of the second Rényi entropy to Shannon’s en-
tropy changes by less than about one per cent when the
statistics is changed from Maxwell–Boltzmann to Bose–
Einstein. On the other hand, as seen from Fig. 4, the en-
tropy itself changes by up to 16%.

Fig. 3. Double ratio (H2/S)BE
(H2/S)MB

. The unphysical results for µ >

m are not included
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Fig. 4. Ratio of Shannon entropies:
SBE(T,V,µ)
SMB(T,V,µ)

The unphysi-

cal results for µ >m are not included

6 Gas of non-interacting particles
in an external potential

The gas studied in the preceding section was confined in
a constant volume. It may be more realistic to assume that
the volume increases with increasing energy per particle,
i.e. with increasing temperature. A model of this type can
be obtained by replacing the free particle Hamiltonian (19)
by a Hamiltonian including an external potential. We will
discuss the simple case of the harmonic oscillator potential:

H =
N∑

i=1

(√
p2i +m

2+
1

2
Kx2i

)
, (33)

whereK is a constant. Repeating the analysis from the pre-
ceding section one finds that in the calculation of logZ the
only difference is that the volume V is replaced by

Veff(T ) =

∫
d3x e−

Kx2

2T = V0T
3
2 ; V0 =

(
2π

K

) 3
2

. (34)

Thus

Ω(T, µ) =−
m2V0

2π2h̄3
T
7
2K2

(m
T

)
e
µ
T , (35)

S(T, µ) =
m2V0

2π2h̄3
T
5
2

[
K2

(m
T

)(11
2
−
µ

T

)
+
m

T
K1

(m
T

)]

× e
µ
T , (36)

and the Rényi entropies are

Hl(T, µ) =
l

l−1

K2
(
m
T

)
− l−

7
2K2

(
lm
T

)
e(l−1)

µ
T

K2
(
m
T

) (
11
2 −

µ
T

)
+ m
T
K1
(
m
T

) S(T, µ) .

(37)

The ratio H2(T,µ)
S(T,µ) is plotted inFig. 5. It is seen that the pres-

ence of the potential reduces the ratio H2(T,µ)
S(T,µ) . In the region

shown in the graph the ratio is between 0.26 and 0.40.Qual-
itatively, the dependence on the parameters is as before.

Fig. 5. Ratio H2/S for non-interacting particles in the har-
monic oscillator potential; quasi-classical approximation. The
unphysical results for µ >m are not included

7 Conclusions

The entropy S is rather difficult to estimate directly from
the data. Recently [10], we have proposed a method to
measure the Rényi entropy H2, which provides a rigorous
lower bound for S. In the present paper we investigate the
relation betweenH2 and S in order to determine how close
to the actual value of S this bound is. Using the ideal gas
model we find that, for the relevant (rather wide) range
of parameters, H2 is not far from

1
2S. The detailed re-

sults are presented and discussed in. It is found that the
ideal gas model reproduces within 10% the entropy den-
sities obtained by other authors using more sophisticated
methods [1, 2]. This suggests that also our estimate of the
ratioH2/S should hold in more realistic models.We, there-
fore, conclude that if the measured Rényi entropyH2 turns
out to be much smaller than half the entropy S estimated
from a model, the model is unlikely to be realistic.

Acknowledgements. The authors thank Ewa Gudowska-Nowak,
Mariusz Sadzikowski and Karol Życzkowski for discussions and
Yuri Sinyukov for calling their attention to [2].

Appendix

The Rényi entropy Hl is a decreasing function of the in-
dex l. This can be seen as follows [12]. Differentiating both
sides of the definition (8) with respect to l we get

dHl
dl
=−(1− l)2

∑

i

Pi log
Pi

pi
, (A.1)

where the notation

Pi =
pli∑
i p
l
i

(A.2)
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has been introduced. Using the identity

log x≥ 1−
1

x
, (A.3)

where equality holds only when x = 1, one easily checks
that for all l 
= 1 the right-hand side is non-positive. Ac-
tually, it is negative unless all the probabilities pi are
equal, which is not the case for multiple particle production
processes.
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